
	

Génériques, quantificateurs généralisés
et opérateurs de Hilbert

Generics, quantifiers
and Hilbert’s operators

Christian Retoré

Université de Bordeaux & IRIT, Toulouse (en 2012–2013)

atelier Déterminants et Inférences (F. Corblin)

Université Paris Sorbonne,

Centre universitaire Malesherbes,

11–12 juin 2013

	

A Reminder on the usual
Montagovian framework

	

A.1. Mind that there are TWO logics

One for expressing meanings:
formulae of first or higher order logic, single or multi sorted.

One for meaning assembly:
proofs in intuitionistic propositional logic, λ-terms expressing
the well-formedness of formulae.

	

A.2. Representing formulae within lambda cal-
culus — connectives

Assume that the base types are
e (individuals, often there is just one) and
t (propositions)

and that the only constants are
the logical ones (below) and
the relational and functional symbols of the specific log-

ical language (on the next slide).

Logical constants:

• ∼ of type t→ t (negation)

• ⊃, &, + of type t→ (t→ t)
(implication, conjunction, disjunction)

• two constants ∀ and ∃ of type (e→ t)→ t

	

A.3. Representing formulae within lambda cal-
culus — language constants

The language constants for multi sorted First Order Logic:

• Rq of type e→ (e→ (....→ e→ t))

• fq of type e→ (e→ (....→ e→ e))

likes λxλy (likes y) x x : e, y : e, likes : e → (e → t)
<< likes >> is a two-place predicate

Garance λP (P Garance) P : e → t, Garance : e
<< Garance >> is viewed as
the properties that << Garance >> holds

	

A.4. Normal terms of type t are formulae

Easy but important result

(induction on normal λ-terms preferably η-long):

1. normal λ-terms of type e with xk : e as only free variables
are logical terms with the same free variables

2. normal λ-terms (preferably η-long) of type t with xi : e as
only free variables are logical formulae with the same free
variables and bound variables.

	

A.5. Montague semantics. Syntax/semantics.

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition

np∗ = e a noun phrase is an entity
n∗ = e → t a noun is a subset of the set of

entities
(A\B)∗ = (B/A)∗ = A→ B extends easily to all syntac-

tic categories of a Categorial
Grammar e.g. a Lambek CG

	

A.6. Montague semantics.
Algorithm

1. Replace in the lambda-term issued from the syntax the
words by the corresponding term of the lexicon.

2. Reduce the resulting λ-term of type t its normal form cor-
responds to a formula, the ”meaning”.

	

A.7. Ingredients: a parse structure & a lexicon

Syntactical structure (some (club)) (defeated Leeds)

word semantic type u∗

semantics : λ-term of type u∗

xv the variable or constant x is of type v
some (e → t)→ ((e → t)→ t)

λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))
club e → t

λxe(clube→t x)
defeated e → (e → t)

λy e λxe ((defeatede→(e→t) x)y)
Leeds e

Leeds

	

A.8. Computing the semantic representation

Put semantics terms into the parse structure & β reduce:

((
λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))

)(
λxe(clube→t x)

))((
λy e λxe ((defeatede→(e→t) x)y)

)
Leedse

)
↓ β(

λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(clube→t x)(Q x))))
)(

λxe ((defeatede→(e→t) x)Leedse)
)

↓ β(
∃(e→t)→t (λxe(∧(clube→t x)((defeatede→(e→t) x)Leedse)))

)
Usually human beings prefer to write it like this:

∃x : e (club(x) ∧ defeated(x , Leeds))

	

A.9. Montague: good architecture / limits

Good trick (Church):

a propositional logic for meaning assembly (proofs/λ-
terms) to compute

formulae another logic with first order (formulae/meaning
no proofs)

The dictionary says ”barks” requires a subject of type ”animal”.
How could we block:

* The chair barked.

By type mismatch, (f A→X (uB)) hence many types are needed.

If we do not want too many operations, we need to factorise
similar operations acting on family of types and terms.

	

B Quantifiers: existential
quantifier, indefinite and definite

determiners

	

B.1. Usual Montagovian treatment

(1) There’s a tramp sittin’ on my doorstep (song)

(2) Some girls give me money (song)

(3) Something happened to me yesterday (song)

Usual view (e.g Montague)

Quantifier applies to the predicate,

[something] = ∃ : (e→ t)→ t

and when there is a restriction to a class: [some]

λPe→tλQe→t(∃λx t.&(P x)(Q x)) : (e→ t)→ (e→ t)→ t

	

B.2. Some problems of this usual treatment

Syntactical structure of the sentence 6= logical form.

(4) Keith played some Beatles songs.

(5) semantics: (some (Beatles songs)) (Keith played)

(6) syntax (Keith (played (some (Beatles songs))))

Example below have the same logical form.... how could they
be interpreted differently.

(7) Some politicians are crooks (web)

(8) ? Some crooks are politicians (us)

	

B.3. Idea (proof theory , mediaeval logic, Rus-
sell, Hilbert,... Geach,)

“A man” by it self seems to be already denoting something....
(Russell, Geach,...)

Idea use a generic element for the quantified NP.

This treatment of quantified NPs goes with dynamic binding and
E-type pronouns.

(9) A man came in. He sat down.

	

B.4. Already a typed view?

At least, opposed to Frege’s single sort view:

∃x :A P(x) ≡ ∃x . A(x)&P(x)

∀x :A P(x) ≡ ∀x . A(x)→ P(x)

(impossible for ”most of”)

in ancient and especially medieval philosophy (in particular Abu
Barakat, Avicenna):

we assert properties of things as being member of some
class (= type?)

	

B.5. A solution: Hilbert’s epsilon

Given a formula F there is an individual term

εxF (x)

(εx binds the occurrences of x in F (x)) with the intended mean-
ing that F (εxF) ≡ ∃x . F (x).

There is a dual term
τxF (x)

with the dual meaning: F (τxF) ≡ ∀x . F (x).

	

B.6. Rules

If ∀x(A(x) ≡ B(x)) then εxA(x) = εxB(x).
The evident deduction rules for τ and ε are as follows:

• From A(x) with x generic in the proof (no free occurrence
of x in any hypothesis), infer A(τx . A(x))

• From B(c) infer B(εx . B(x)).

The additional rules can be found by duality:

• From A(x) with x generic in the proof (no free occurrence
of x in any hypothesis), infer A(εx . ¬A(x))

• From B(c) infer B(τx . ¬B(x)).

Hence we have F (τx . F (x)) ≡ ∀x .F (x) and F (εx . F (x)) ≡ ∃x . F (x)
and because of negation, one only of these operator is needed,
usually the ε operator and the logic is known as the epsilon
calculus. .

	

B.7. First and second epsilon theorems (Hilbert,
1934)

The first and second epsilon theorem basically say that this is
an alternative formulation of first order logic.

First epsilon theorem When inferring a formula C without ε
symbol nor quantifier from formulae Γ not involving the ε
symbol nor quantifiers the derivation can be done within
quantifier free predicate calculus.

Second epsilon theorem When inferring a formula C without
ε symbol from formulae Γ not involving the ε symbol the
derivation can be done within predicate calculus.

	

B.8. Interpretation – Asser 59, Leisenring 69

Domain M

Function, Mp 7→ M , predicates P ⊂ M r , as usual.

As part of an interpretation there is a choice function Φ which
maps any part N of M to Φ(N) ∈ N — what about Φ(∅)? An
arbitrary element in M .

Of course there are assignments for interpreting free variables.

	

B.9. Completeness

Semantic consequence.

Maximally consistent sets of formulae.

Equivalence of terms t ∼ u if t = u consequence of X

Representable parts N = A(x) (Φ(N) = |εxA(x)|, otherwise ar-
bitrary in N).

No need of Henkin witnesses (the epsilon are there!).

Any maximal (w.r.t. semantic consequence) consistent set of
formulae is true in some model.

	

B.10. Properties

Formula of the predicate calculus -¿ epsilon formulae (even
quantifier free epsilon formulae).

Converse? complex dependencies, like dynamic binding:

come in(εx .Man(x)) and sit down(εx .Man(x))
entails someone a man did both.

Heavy notation for an n-ary predicate e.g. :
∀x∃yP(x , y) is
∃yP(τxP(x , y), y) is
P(τxP(x , εyP(τxP(x , y), y)), εyP(τxP(x , y), y))

	

B.11. Advantages of ε

Follows syntactical structure.

Has a denotation by itself.

General presupposition F (εxF): in natural language if we say
”A man came in.” we generally assert that such an individual
exists and is a man.

	

B.12. Definite and indefinite descriptions

ιxF (x) The unique x such that (assumed to be due to Russell?)

According to von Heusinger (1995,1997, 2004) we can say the
even if not unique, and it will pick up the most salient one, so
iota can be left out.

• ε for definite descriptions

• η for indefinite description

Only a difference of interpretation: η a new one ε the most
salient one.

	

B.13. Other outcomes of Hilbert’s operator

Universal quantifications: use τ ... with presupposition P(τxP(x))

E-type pronouns:

(10) A man came in. He sat dow.

(11) ”He” = ”Aman” = (εxMan(x)).

	

C Typed Hilbert operators

	

C.1. Polymorphic type system

Many sorts for including some lexical semantics.

Restriction of selection: type mismatch.

Some flexibility: organisation of the lexicon.

For operation that are uniform on types: quantification over
types.

	

C.2. Types

• Constants types ei and t, as well as any type variable
α, β, ... in P , are types.

• Whenever T is a type and α a type variable which may but
need not occur in T , Λα. T is a type.

• Whenever T1 and T2 are types, T1 → T2 is also a type.

	

C.3. Terms

• A variable of type T i.e. x : T or xT is a term.
Countably many variables of each type.

• (f τ) is a term of type U whenever τ : T and f : T → U .

• λxT. τ is a term of type T → U whenever x : T , and τ : U .

• τ{U} is a term of type T [U/α] whenever τ : Λα. T , and U
is a type.

• Λα.τ is a term of type Λα.T whenever α is a type variable,
and τ : T without any free occurrence of the type variable
α. (Type of x in ∀α.xα???)

	

C.4. Examples of second order usefulness

Arbitrary modifiers: ΛαλxAyαf α→R .((readA→R→t x) (f y))

Polymorphic conjunction:

Given predicates Pα→t, Qβ→t over entities of respec-
tive types α, β,

given any type ξ with two morphisms from ξ to α, to β

we can coordinate the properties P , Q of (the two im-
ages of) an entity of type ξ:

The polymorphic conjunction &Π is defined as the term

&Π = ΛαΛβλPα→tλQβ→t

Λξλxξλf ξ→αλg ξ→β.
(andt→t→t (P (f x))(Q (g x)))

	

Figure 1: Polymorphic conjunction: P(f (x))&Q(g(x))
with x : ξ, f : ξ → α, g : ξ → β.

	

D System F based semantics
and pragmatics

	

D.1. Examples

(12) Dinner was delicious but took ages.
(event / food)

(13) * The salmon we had for lunch was lightning fast.
(animal / food)

(14) I carried the books from the shelf to the attic.
Indeed, I already read them all.
(phys. / info — think of possible multiple copies of a book)

(15) Liverpool is a big place and voted last Sunday.
(geographic / people)

(16) * Liverpool is a big place and won last Sunday.
(geographic / football club)

	

D.2. Principles of our lexicon

• Remain within realm of Montagovian compositional seman-
tics (for compositionality)

• Allow both predicate and argument to contribute lexical in-
formation to the compound.

• Based on optional modifiers attached to words (as opposed
to derived from types).

• Integrate within existing discourse models (e.g. λ-DRT).

	

D.3. The Terms: principal or optional

A standard λ-term attached to the main sense:

• Used for compositional purposes

• Comprising detailed typing information

Some optional λ-terms (none is possible)

• Used, or not, for adaptation purposes

• Each associated with a constraint : rigid, ∅

	

D.4. RIGID vs FLEXIBLE use of optional terms

RIGID

Such a transformation is exclusive:

if is used, then the other associated with the same word are not
used.

Each time we refer to the word it is with the same aspect.

FLEXIBLE

There is no constraint.

Any subset of the flexible transformation can be used:

different aspects of the words can be simultaneously used.

	

D.5. Standard behaviour

φ: physical objects

small stone

small︷ ︸︸ ︷
(λxϕ. (smallϕ→ϕx))

stone︷︸︸︷
τϕ

(small τ)ϕ

	

D.6. Correct copredication

word principal λ-term optional λ-terms rigid/flexible
Liverpool liverpoolT IdT : T → T (F)

t1 : T → F (R)
t2 : T → P (F)
t3 : T → Pl (F)

is a big place big place : Pl → t
voted voted : P → t
won won : F → t

where the base types are defined as follows:

T town
F football club
P people
Pl place

	

D.7. Liverpool is a big place

Type mismatch:

big placePl→t(LiverpoolT))

big place applies to “places” (type Pl) and not to “towns” (T)

Lexicon tT→Pl
3 turns a town (T) into a place (Pl)

big placePl→t(tT→Pl
3 LiverpoolT))

only one optional term, the (F)/ (R)difference is useless.

	

D.8. Liverpool is a big place and voted

Polymorphic AND yields: (&Π(big place)Pl→t(voted)P→t)

Forces α := Pl and β := P , the properly typed term is

&Π{Pl}{P}(big place)Pl→t(voted)P→t

It reduces to:

Λξλxξ λf ξ→αλg ξ→β(andt→t)→t (big place (f x))(voted (g x)))

Syntax applies it to “Liverpool” so ξ := T yielding

λf T→PlλgT→P(and (is wide (f LiverpoolT))(voted (g LiverpoolT)))).

The two flexible optional λ-terms t2 : T → P and t3 : T → Pl
yield

(and (big placePl→t (tT→Pl
3 LiverpoolT))(votedPl→t (tT→P

2 LiverpoolT)))

	

D.9. Liverpool voted and won

As previously but with won instead of big place.

The term is:
λf T→PlλgT→P(and (won (f LiverpoolT))(voted (g LiverpoolT))))

for “won”, we need to use the transformation t1 : T → F

but T1 is rigid, hence we cannot access to the other needed
transformation into a “place”.

	

D.10. Typed Hilbert’s operators? 1) base types.

Personal intuition: there are less types than logical formulae
with a single free variable, they are more constrained, they
should be natural comparison classes.

What are the base types? CN (as Luo: rather sensible solution)

What about verbs and propositions?

(17) He did everything he could to stop them.

(18) And he believes whatever is politically correct and sounds
good.

	

D.11. Typed Hilbert’s operators? 2) predicates.

What is a predicate? what type is its domain?

For instance, is cat a property of animal or of all individuals ?

What relation between the type cat and the property of being a
cat?

	

D.12. Some proposals

Predicates in a typed world:

• Simplest: predicates are of type e → t and they can be
restricted.

• Predicates are not necessarily of type e → t (for being
more natural) but a predicate Pα→t can be restricted and
extended (they are false elsewhere). Hence, syntactically
we do not need to know whether α ⊂ β, α ⊂ β

Types in a world with predefined predicates:

• Given a type α there is a corresponding predicate α̂ : e →
t. Too complicated to have a rule picking up the natural
type ”larger” than α. If types are some kind of an ontologi-
cal tree, the mother node is good candidate.

• Alternative with, in my opinion, too many types: each for-
mula with a single variable introduces a new type.

	

D.13. An example with an indefinite article

(19) a cat is sleeping under your car.

If cat is a property of type, say animal→ t

• a: Λα(α → t) → α (”a” is a polymorphic ε). α gets in-
stantiated as The general presupposition P(a(P)) yields
cat(a(cat)). The epsilon term should be interpreted as an
individual enjoying the property. If there is none, as an
ideal individual, not in the denotation of P .

If cat is a type,

• It can be turned into a property and then do as above.

• a:Λα.α is strange but works (no problem to have a constant
of type ⊥) There is no need to add any presupposition,
since because of the type of a one has a(cat) : cat.

	

D.14. von Heusinger intepretation

Interpretation of ε calculus is complicated Indeed, some ε-formulae
have no equivalent formula in predicate logic. They can involve
intricate dependencies, like Henkin branching quantifiers.

von Heusinger ’s interpretation (IMHO: cosi cosi): a new one
should be considered at each time. But...

(20) An old man came in he sat down. A tall man went out.

(21) εx(M(x)&O(x)) 6= εx(M(x)&T (x))

Although they are not the same ε-terms, their referents ought
to be different.

	

D.15. Definite description, universal quantifiers

The formalisation also works for definite descriptions:

(22) The cat is sleeping under your car.

A difference is at interpretation: ι should be interpreted at the
unique such that, and

In fact the simplest is the universal quantifier:

(23) Any cat sleeps a lot.

The presupposition cat(τxcat(x)) (obtained from the general P(τxP(x)))
The τxcat(x) is interpreted as an additional virtual element.

	

E Conclusion

	

E.1. What we have seen so far

A general framework for

the logical syntax of compositional semantics
some lexical semantics phenomena

Guidelines:

Terms: semantics, sense, instructions for computing
references

Types: pragmatics, defined from the context
Idiosyncratic (language specific) Lot of lexical infor-

mations. J’ai crevé. / ??? I went flatJe suis venu à
pieds, mon vélo est crevé / *déraillé.

Practically: partly implemented in Grail, Moot’s wide coverage
categorial parser, for fragments with a hand-typed semantic lex-
icon — but with λ-DRT instead of HOL in lambda calculus.

	

E.2. Perspective 1: base types, specialisation
relations, subtyping

What are the base types? (linguistic idea comparison classes,
classifiers for languages with classifiers)

How can they be acquired?

Can the optional modifiers be acquired, at least the specialisa-
tion modifiers?

Relation to ontologies? (lexical vs. world-knwoledge ontolo-
gies)

What would be an adequate notion of subtyping? (for a sys-
tematic coding of the ontological specialisation relations that
are often admissible in the language).

Extension to system F of coercive subtyping

	

E.3. Perspective 2: formulae vs. types

Typing (∼ presupposition) is irrefutable sleeps(x : cat)

Type to Formula: a type cat can be mirrored as a formula that
can be refuted cat : e→ t cat(x) : t

Formula to Type? Is any formula with a single free variable a
type? cat(x) ∧ belong(x , john) ∧ sleeps(x):type?

At least it is not an implicit comparison class nor a classifier.

